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Restricted diffusion and the return to the origin probability at intermediate and long times
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Pulsed field gradient spin echo magnetic resonance measurements on fluid saturated porous media provide a
natural framework for the examination of a classic problem in mathematical physics. We examine the overall
time dependence of the return to the origin probabilRTOP with particular emphasis on the intermediate
and long time behavior. In the long time limit this probability is related to the electrical conductivity. In
periodic geometries we compare the results of eigenvalue expansions and numerical simulations. Here we find
that, when the diffusion length is roughly equal to a pore diameter, the normalized RAQP, shows a
maximum. Thus, the approach to the long time limitist monotonic. We show that the existence of this
maximum can be predicted based on variational arguments. For disordered systems, simulations and experi-
ments are found to be in agreement and again suggest that the behavBi(tpfis not monotonic.
[S1063-651X97)06304-9

PACS numbd(s): 05.60+4w, 66.10.Cb

I. INTRODUCTION this amounts to simply dividing bR, the diffusion constant
for the bulk fluid. Similarly, for P(t) we divide by
Transport and diffusion in three-dimensional porous me-Py(t)=(47Dot) ~¥2 to obtain the normalized return to the
dia are important in connection with problems relating to aorigin probability
wide range of materials, e.g., reservoir rocks, catalytic beds,
foams, and ceramic composites. In an important subset of P (t)=
these problems one is concerned with systems comprised of S
an insulating, solid granular matrix saturated with a conduct-
ing pore fluid. Within this framework, the transport problem Interestingly,D(t) and Py(t) have in common the fact that,
is closely related to the inverse problem studied by Kac in é@st—0, the variation of both functions is determined by a
classic paper entitled “Can one hear the shape of a drum?iength scale of physical interedt, /S, the ratio of the pore
[1]. (de Genne$2] has studied a related problem in the con-space volume to its surface argi-9]:
text of magnetization decay in a bounded regidsriefly,

(47Dt)%?

v ; e M. (1.1

p

the question is whether or not the structdre., shapgof the 4S
boundary can be determined from a knowledge of the diffu- D(1)/Do=1~ N, \/D_0t+ O(Dqt). 1.2)
sion equation’s eigenvalue spectriiBi-5]. P
An important aspect of restricted diffusion is the choice of
boundary condition at the pore-matrix interface. However, Jm S
the issues of interest in this paper are easily understood even Ps(t)=1+ 2 V_p\/D_OHO(DOt)- 13

with the simple assumption that the boundaries are perfectly

reflecting (i.e., that interfacial absorbtion can be neglegted Physically, the signs of these corrections are easily under-
Making this assumption, we consider two of the tim¢ ( stood: diffusive motion in the pore space is hindered by the
dependent quantities studied by Kdd, the diffusion coef-  solid matrix,reducingthe mean square distance traveled by
ficient, D(t)=(|r(t)|?)/(6t), and the spectral function, the particles whilencreasingthe return to the origin prob-
P(t)=(1NV,)=,e M. Herer(t) denotes the position of a ability (RTOP.

diffusing particle and{\} are the eigenvalues of the equa- At long times, bottD(t) andP4(t) tend to limiting values
tions describing diffusion in the pore space of voluwg. that depend only on the lowest lying eigenvalues. However,
We will see thatP(t) is related to the probability that a at intermediate times they both depend on the entire spec-
diffusing particle returns to its point of origin at time By  trum of eigenvalues, albeit in somewhat different ways. A
convention, bottD (t) andP(t) are usually normalized with  number of theoretical and experimental studies have shown
respect to their values for unrestricted diffusion. Edft) thatD(t) decreases monotonically from the valDg to the
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long time limit Dy, which can be determined, indepen- lated to the problem of self-diffusion in restricted geom-
dently, from the dc electrical conductivity,; [10,11. Very  etries. In practice, however, PGSE measurements in porous
little, however, is known about the overall time dependencénedia are complicated by the fact that the gradient pulses are
of P4(t), except that, in periodic systems without any inter-never infinitely sharp so that diffusioguring the pulse ap-
facial relaxation, this quantity has been shown to approacRlication must be taken into account. The implications of this
the long time asymptotes (D /D) ¥? [8]. (Here the po-  effect will be discussed in Sec. Ill C; the following develop-
rosity ¢ denotes the volume fraction assigned to the porénent will assume that ideal conditions are obtained so that
space). Accordingly, we have undertaken a detailed study ofthe PGSE amplitudeM (k,t), can be expressed in terms of
this quantity and have found thRt(t) exhibits considerably the Fourier transform of the diffusion propagator,
more varied and interesting behavior tHaft). For this rea-  G(.r1.t).

son we believe thaPg(t) will be an important indicator of

the structure of the underlying porous media. Our findings A. General equations

are as follows: _ Given the molecular diffusion coefficiem, of the bulk
(@) In periodic porous medi®(t) can be calculated by fluid, the propagatoiG(r,ry,t), for r andr, in the pore

either eigenvalue expansions or by numerical simulations. "gpace is defined by the equations

the absence of interfacial relaxation, both techniques predict ’

thatP4(t) crosses above its long time asymptote and exhibits

a well definedmaximumat intermediate times. This is en- IG(r.ry.t) =DV2G(r,ry,1) 2.1)
hanced by either interfacial relaxation or grain consolidation at R
to lower porosities.

(b) This behavior is predicted by a new theorem that con- G(r,r t=0")=58%r—ry), 2.2

strains the shape of the lowest eigenvalue band. Additional
developments in this direction are discussed by Bergman
[12]. Don{VG(r,ry,t)+pG(r,r;,t)}cs=0, 2.3

(c) In disordered bead packs numerical simulations pre-
dict nonmonotonic behavior foP(t). As in the ordered wheren is the outwardfrom pore to graih directed normal
case, this effect becomes more pronounced as the bead paghit vector at the pore-grain interfad, and the parameter
is consolidated at lower porosities. Experimental results oy determines the strength of the enhanced interfacial spin
unconsolidated bead packs are in reasonable agreement wilaxation. Under the assumptions outlined above, the PGSE
the simulations, again suggesting nonmonotonic behavior foasmplitude M (k,t) is given by the double spatial Fourier
P4(t). transform

(d) Systematic trends appear to relate the way Bhdt)
moves away from its short time behavidr.3) to the tortu-

X 1 )
osity of the pore space. M(k,t)= —f drf dr,G(r,ry,t)e 0= (2.4
Volv, v,
Il. PGSE MEASUREMENTS AND THE RETURN whereV, is the total volume of the pore space. The quantity
TO THE ORIGIN PROBABILITY M(t)=M(k=0,t) represents the total magnetization of the

Pulsed field gradient spin eckBGSH nuclear magnetic SYStem. Fop=0 it has the constant value 1, but for0 it
resonancéNMR) measurements provide an important probed€ca@ys in time fromM(0)=1 to M()=0. For smallk,
of the restricted diffusive motion of water molecules throughM (K.t) has the simple forni6,7]
porous media and biological tiss[E3—16. There have been
a number of recent investigations regarding the relationship M(k,t) DK%
between the microgeometry that restricts the motion of water M(t) - : (2.9
molecules and the PGSE amplitud&’—24. In a PGSE ex-
periment, the spin echo radio frequency pulse sequence his relation defines the effective time dependent diffusion
combined with the application of two gradient pulses, sepaeoefficient D(t), which characterizes the long wavelength
rated by a timet, each of which briefly imposes a spatial behavior of the PGSE amplitude. In the limji—0,
dependence on the static magnetic field. In the limit that thed =D (t— ) is directly related to the electrical conductiv-
durationé of each gradient pulse approaches zero as its anity of the fluid saturated porous medium and can be deter-
plitudeg approaches infinitysuch thatdg remains finitg¢the ~ mined experimentally by routine measuremefit4]. The
interpretation of this measurement simplifies considerablytime dependent diffusion coefficieBt(t) can be calculated
Physically, the two gradient pulses can then be viewed asither from values oM (k,t) at smallk vectors or from the
instantaneously dephasing and then rephasing the spins imean square displacement of a diffusing particle,
volved in the underlying spin echo measurement. In the ab{[r(t)]%)=6D(t)t.
sence of diffusion, these two effects cancel exactly. How- In principle, by integrating Eq(2.4) over all ofk space,
ever, if a spin originally at diffuses tor’ at timet, when the  we obtain
second gradient pulse is applied, its net phase change is
k-(r—r'), wherek = y8g, y is the gyromagnetic ratio, and dk 1
g is a vector along the gradient direction with magnitude P(t|p)5f M(k,t)—sz—J G(r,r,t)dr. (2.6
In this case, the decay of the echo amplitude is directly re- (2m)” Vp Vp
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By definition, this is the RTOP density averaged over allThe PGSE amplitude has a particularly concise expression in
possible initial positions of the diffusing particle. Clearly, terms of the Fourier expansion coefficieﬁt%(G)

this quantity carries information about the degree of restric-

tions to diffusion in a porous medium. Equati¢2.6) also Vv

provides a way of obtaining the RTOP from PGSE data. In M(k,t)= -S> e’*nq‘[|ﬁnq(Gk)|2]q:k,Gk, (2.15

free space the time dependenceRgt|p) can be evaluated ¢°n
analytically, P(t|p) — Po(t)=(4mDgot) "*2 As long as we
are dealing with a percolatingnterconnectedpore space, it

is clear that the RTOP must decay to zero at long times. |
we also havep#0, then part of the enhanced decay with
time of P(t|p) is due to the decay of the total spin polariza- fra
tion, which is described b (t). Therefore, in order to iso-

late the effects of the interface on the RTOP, we normalize

where =V, /V is the porosity andy is the reciprocal lat-
ice vector that is closest to. For smallk, we haveG,=0
ndg=Kk.

To evaluate the RTOP, we note that within the present

mework Eq.(2.7) reduces to

- . (4mDgt) %2,
P(t|p) with respect to botlPy(t) andM(t): P.(t|p)= VM S e, (2.16
p nq
_ P(tlp) where
P(tlp)= M(DPy(D) (2.7)
V
In order to make contact with the discussion in the Introduc- M(t)=—5> e *d[T.(0)|2 (2.1
tion, we note that ¢~

From the above analysis it is clear that, in periodic sys-

limP(t|p)=P(t), (2.8 tems, the RTOP carries information about the connectivity of

p—0 the pore space. At long times, bofh(t) andM(t) depend
only on the lowest lying eigenstates. In the cas#gt) this

lim Py(t]p) = Py(t). (2.9 ~ Mmeans the statayy, while in the case oP(t) this means

the smallq states of the lowest bang. In the case of a
porous medium with cubic symmetry, these low lying eigen-
values have the form

p—0

B. Results for periodic systems

The diffusion propagator can always be expanded in )\Oq=7\oo(P)+Deﬁ(P)q2+ o(q%), (2.18
terms of a set of orthonormal diffusion eigenstate®,24.
When the microstructure is periodic, the eigenfunctions havevhere Aoo=0 if p=0. [The qualitative dependence of
the Bloch-Floquet formunq(r)e'q'r‘knqt, where\,q is the  Deg(p) onp is discussed in Ref§11] and[24].] Thus, for a
eigenvaluen is a band indexgq is a wave vector in the first periodic cubic porous medium, the sums owdn both Egs.
Brillouin zone of reciprocal space, and the periodic function,(2.16) and (2.17 reduce to the single term=0, while the

Unq(r), satisfies the following equations: sum overq in Eq.(2.16 becomes a Gaussian integral, with a
result that partially cancels the prefactor#Bqt)%2 The
MngUng(F) + Do(V+i9)2Upg(r) =0, (2.10  'emaining exponential time dependeree' o also cancels,
a-na a and we get
{Don- (V+iQ)Ung(r) + pUng(N}ex=0,  (2.11 _ v Do |32
lim Py(t|p) = : (2.19
o [7v,dVoo(1)TZ | Den(p)
* —
vaqunq(r)umq(r)—anm. (2.12 1( D )3/2 220
=— , 2.2
¢\ Desi(p)

The functionu,4(r), restricted to the pore spatg, can be

expanded in a Fourier series where we used the Cauchy-Schwartz inequality, along with
Eq. (2.12), to get an upper bound on the integral

ep<r)unq<r>=§ Ung(G)e'CT, (2.13

2
U dVugg(r) sf dV|u00|2f dv=V,. (2.2)
VP VD VP

where 6,(r) is the characteristi¢or indicatoy function of _ _
the pore space, equal to 1 inside that pore space and toRRr p=0, Ug(r)=1/V,=const[23], and the inequality

elsewhere. The diffusion propagator can now be written assign in these equations becomes an equality. The right-hand
side (rhg) of Eq. (2.19 was first proposed as the limiting

form for P4(t) at long times based on a phenomenological
Grr' )= e Mty (Hu* (r)ed =, (2.1 ansatz[.G], which assumed that the PGSE amplitude is given,
( ) nEq ng(M)Ung(r") 219 approximately, by the convolution of an effective Gaussian
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and the pore space two point correlation funcii6iv]. Here  The last equality is related to the connection, alluded to pre-

we haveprovedthis result for the quantity viously, betweenD.s and the bulk effective conductivity
o Of the same porous medium, where the grains are insu-
Ps(t)=lim P4(t|p) (2.22 lating and the pore space has a nonzero conduciigthy23]:
p~>0

Det Lloer 1
for any periodic cubic porous medium. Otherwise, when Dy & oo ¢F (2.32
p#0, the rhs of Eq.2.19 is only a lower bound for the
asymptote ofPg(t). In fact, the results of Eq92.19 and  Here F is the so-called “formation factor” of the porous
(2.20 can be extended to more genefak., anisotropit  medium. Thus,2.28—(2.30 can be reinterpreted as equa-
periodic structures, and to certain nonperiodic structures agons for the electric potential in such a system. In that case,

well [12]. it is well known that, for an electrically isotropic metal-
Most of the results presented in this paper will concerninsulator composite, we hay&5,26
the limiting case of Eq(2.22. Here we can make a precise

statement about the wa,(t) approaches its long time as- oert .1

ymptote. Following the same idea that led to E&19), we U_O5aﬁ_v v dV(Vf,- Vig). (233
can write the following expression for the long time behavior P

of Py(t) for that case: From Eq.(2.3)) it follows that, for sufficiently long times,

we can write

Py(t)=

(47Dt)%?  d3q
0 ame (2.23 (47D d%q o 1 (Dg|*?

¢ ™ Py(t)> ze Der@=— | —|

¢ (27) ¢

We now show that, not only sy, well approximated by the (2.39
parabolaD g% for small g, but that Aoy lies below that )
parabola forarbitrary g. Due to the variational properties of Thus,Ps(t) approaches its=c value from above, and con-
the diffusion problem), can be obtained as the minimum Sequently itmusthave a maximum at some intermediate

value of the following integral12]: time. B
These results actually have a very general validity: they

can be extended to the case of nonzero surface relaxation
Dof dVv|Vy?, (2.24) p# 0, to an anisotropic medium, and to a nonperiodic porous
Vp medium[12].
wherey(r) is an arbitrary normalized Bloch function, i.e.,
11l. COMPUTATIONAL AND EXPERIMENTAL
TECHNIQUES

fv dV| ¢|2: 1, (2.29 A. Random walker simulations
p

Given a direct representation of the pore geometry, the
iq- PGSE amplitude can be calculated by random walk simula-
—alg-a
Ylra)=e=y(r) (2.2 tions of diffusing particle$9,27,29. In the present paper we

0N \oq by using the following trial function in Eq2.24): on the pqcking_ of _sphe_rical gr_ains. The first is an oro_lered
structure in which identical grains are arranged on a simple

iq-f) cubic lattice; the second is a disordered three-dimensional
w(r)= € 2.27) packing of nearly monosized spherical grains. The second
\/\/—p ' ' system is comprised of a 20 20 X 40 dense random pack-
ing with periodic boundary conditions in theandy direc-
wheref (r) is the solution of a stationary diffusion problem tions [9,27,24. Because this packing isot periodic in the

in the same porous medium z direction, random walkers are only released within a band
) . centered at the system’s midheight. The packing is large
Vi o(r)=0 inV,, (228 enough in thez direction that, in the time scales of interest
here, walkers never diffuse to reach the system’s top or bot-
ﬂzo at the interface, (2.29 tom. This packing .is large enc_)ugh to provide a rgasonable
an average over the different configurations found in disordered
sphere packs. The grain radii for the dense random packing
fa(r)—r,is aperiodic function. (230 vary by +8% to reflect the experimental variations present

in nominally monosizegackings. The porosity of both sys-

tems can be varied by application of the grain consolidation

algorithm[29]; the centers of the grains remain fixed while

1 the sphere radius is increased.

Nog< Dov_f dV|V(q-f)|?=Des 9°. (2.30) In the present S|.mulat|ons raljdom walker_s move through
pJVp the pore space taking steps of fixed lengttwith the clock

In this way we get, for a system with a periodic cubic mi-
crostructure,
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advancing byr=€2/(6D,) at each step. Since we are prima-
rily interested in the behavior of long time diffusion, rela-

tively large step sizes were employed. For the cubic packing

€ was taken to be equal to 0&1wherea is the(fixed) edge

RESTRICTED DIFFUSION AND THE RETURN TO THE ...

length of the unit cell. In the dense random packing,ynere

e=0.0R,, whereR; is the midpoint of the original distri-
bution of sphere radii(When the packings are unconsoli-

dated,a/2 is the radius of the spheres on the cubic lattice, so

the two values ofe are roughly comparableWalkers are
launched from randomly chosen positiong, (g ,2) within

the pore space and, at each time step of sjzzlvance from
their current position X;,y;,z;) to a new position
(X2,¥2,2,) on the surface of a sphere of radiaidmplemen-
tation of the boundary condition2.3) is, in principle,
straightforward[28] as long as the absorption strengths

reasonably weakas is the case in almost all experiments of
interesj. In fact, all of the simulation results to be discussed

in this paper are confined to the cgse 0. In this limit we

have blind reflection at the pore-grain interface; the walker .
returns to its attempt position and the clock advances by one

time stepr. Because it is well known that long time diffusion

behavior is difficult to simulate, and because a nonzero valu

of p exacerbates that situatiphl], we have chosen to focus
here on thep— 0 limit. Even with this assumption, we will

see that the statistical uncertainties involved in the calcula.
tion of P4(t) are quite formidable. To evaluate the RTOP, at

a prespecified array of timds,} we calculate the number of

walkers whose distance from their starting point lies betwee

Rn-1=(m—1)6R andR,=mdJR. The bin sizeSR must be
comparable tgbut not commensurate wiktlthe random walk
step size; in the present simulations we ta&B/a [or
S6R/(2Ry)] equal tow/400. Thus the simulations provide a
discrete representation of the probability(R,,,t,), that
walkers will be located in thenth spatial bin after time,,.

In practice, of course, a given walker will never retiex-
actly to its point of origin. Accordingly, we are led to con-
sider the quantity

1
P(AR,t)z—f drlf drG(rq,r+rq,t). (3.1
Volv, [r|<AR

P(AR,t) is by definition the probability that a diffusing par-
ticle will return to within AR of its starting point after time
t, averaged over all possible initial positiof&9]. (In prac-
tice, the values ofAR employed in our simulations were
multiples of 4R, so that the inequalitAR> e was always
satisfied) For the case of diffusion in a homogeneous fluid,

47(AR)®

P(AR,t)HPO(AR,t)ZWﬂ (32)

as long as 4R)2<4Dgt. By analogy with Eq.(2.7), we
introduce the normalized quantiB (AR,t):

P(AR,t)

PS(AR,t)Z m

(3.3

To leading order iR, one has the expansi¢@1,9|

4229
ar@) s }
PJ(AR,t)=P(AR=0})| 1- —— —AR+O((AR)?)|.
16 V,
(3.9
It)= (G(r,r,t)s 3.5

(G(r,r,t))vp'

I'(t) is the ratio of the RTOP for particles originating on the
interface to that for particles originating in the bulk.
I'(t—0)=2 and at long time§'(t)— 1. This equation indi-
cates that calculations with nonzef#dR are expected tan-
derestimatehe truePg(t).

B. Fourier expansion of diffusion eigenfunctions

In the Fourier method, the eigenstates are found by solv-
ing a matrix eigenvalue problem for the Fourier expansion
coefficients’ﬁnq(G), obtained from the differential equation
2.10 by using expansions such as Eg.13. The transfor-

ation to a matrix eigenvalue problem is complicated by the
fact that the boundary conditid@.11) must also be imposed.
For the nonabsorbing casp=0), this was done by extend-
ing Eq. (2.10 to the entire volume Vof pore space plus
matrix space in such a way that E®.11) is automatically
satisfied[22,23. The resulting matrix eigenvalue problem

as then solved by standard numerical methods. For a
system comprised of a simple cubic array of spherical
obstacles, we included reciprocal lattice vectofs
=(2mla)(ny,ny,n,) with integer components,,ny,n,
ranging from—4 to 4. This translates to a matrix of size
729X 729. Using this approach, it was possible to treat small,
nonoverlapping obstacles, as well as large, overlapping ones.
To evaluate the RTOP, theesum in Eq.(2.16 was accom-
plished by solving Egs(2.10—(2.12 for 512 differentq
values uniformly distributed over the first Brillouin zone in
reciprocal space.

When there is some absorption at the pore-matrix inter-
face, the eigenstates were found by expanding them in a
series ofp=0 eigenstates. The eigenvalue problem of Eqgs.
(2.10—(2.12 is thereby translated into a matrix eigenvalue
problem where the eigenvectors are the required expansion
coefficients[24]. Again, this was solved using standard nu-
merical methods.

To conclude this discussion we note that numerical simu-
lation and eigenvalue techniques are complementary in their
treatment of the RTOP. From E(R.16) it is clear that the
eigenvalue expansion will converge rapidly at long times.
However, at short times the results will be considerably less
reliable because the higher eigenvalue bafigs, X\, with
large values of the band inde® cannot be calculated very
accurately. By contrast, in the simulations the short time be-
havior is relatively easy to calculaf8], while at long times
it becomes increasingly difficult to obtain good statistics, and
this limits the accuracy of the subsequét) estimates.

C. PGSE experiments

We have applied the PGSE technique to measure
Ps(t|p) in two samples comprised of unconsolidated ran-



4230 SCHWARTZ, HURLIMANN, DUNN, MITRA, AND BERGMAN 55

domly packed spherical beads, saturated with distilled water. . T T T T T

o]
|

The diameter of the beads, g, was in the range | Small Beads  Large Beads
380=2Ry=515 um in the first sample and 472R, oo om0 1000ms }i
<57 um in the second sample. The measurements were per- e

formed with a GE 2.0 T CSI-ll imaging spectrometer oper-
ating at 85.56 MHz for protons and equipped with self-
shielding gradient coils capable of delivering a maximum
gradient strength of 20 G/cm. The measurements on the
smaller beads were performed using self-shielding gradient
coils capable of delivering a maximum gradient strength of
280 G/cm. The temperature of the sample was controlled at
25.0°C.
We determined independently the ratg$V, for each

sample by an analysis of the short time behavior of the dif-

fP\( kmu\’ i )

. . kmuxv /S
fusion coefficientD(t) [6,10.. The measured values were P

(48.4um) "t and (5.3:m) "1, respectively. This is consistent
with the bead diameters stated above. For monosized sphe,UF

FIG. 1. Normalized integral of the measured echo amplitude
(k,t) vs upper limit of integratiork,,,, for two different samples

- . . and three diffusion times for each sample. The dashed lines indicate
S/VP_6 (1= ¢)/(2Ro). Assuming a random packing po- the extrapolation of the integral as discussed in the text. The ex-

. _ . — _1
rosity 0f1¢—0-381_ we obtain S/Vp~(45'7/"m) and trapolated values fok,,,— are indicated on the right with error
(5.3um)™*, respectively. For each sample, we have meaygs.

suredM (k,t) as a function ok for three diffusion timeg.

The times were 250 ms, 1 s, and 2 s for the large beads, anftal in Eq. (3.7) has not yet fully reached its asymptotic
160 ms, 500 ms, and 1.5s for the small beads. The NMRalue. The limitations on the wave vector set the smallest
pulse sequence used is based on the stimulated spin echfistance],,, that can be probed by PGSE techniques, typi-
Each gradient pulse is divided into a pair of half-Sine-Shape@a”y Imin” 1/kmax- In generaL there m|ght be structural fea-
bipolar pulses, separated bymapulse. This attenuates any tyres on a length scale smaller thhyp, and the quantity
effects due to baCkgrOUnd gradients. A detailed deSCfiptiOl’PS(tlp) cannot be extracted. However, for the |argest gradi-
of this pulse sequence was given by Latetial. [30]. The  ents used| yin~ 1/Kpay is Smaller than all the length scales
duration of each half-sine-shaped pulse was1.5 ms. The  characterizing the pore geometry in our samples, and we

wave vectork was changed by increasing the gradientmay use the asymptotic behavior Mf(k,t) for large values
strengthg while keepings fixed. In our measurements,  of k [11],

was stepped up in equal intervals up to some vape,.

The maximum gradient strengti,.x was adjusted for each T 1

sample and diffusion time by requiring that the signal de- M(k't)|k—>°°:\/_ F<G(r'r't)>reiwﬁ' (3.8
cayed to about 310 * of its initial value and became com- :

parable to the noise level. We measured separately the liwhere(G(r,r,t)), s is the probability of return to the origin
earity of the spectrometer and corrected for any deviationdor spins initially on the pore-grain interface. Our mea-
The measured echo amplitudes were normalized with respestirements show thail (k,t) has reached this * behavior at
to the extrapolated amplitude (t)=lim,_ oM (k,t), as de- the largesk values in all cases and that E§.8) can be used
scribed in[20]. This corresponds to a normalization with to extrapolateM (k,t). In Fig. 1 this extrapolation is repre-

packs, the ratioS/V, is related to the bead diameter by

respect to the number of surviving walkers after time sented by the dashed lines, while the values of the extracted
If the medium being studied is isotropic, E@-6) reduces Pg(t|p) are shown on the right along with their estimated
to a radial integration uncertainties.
4 The correction for finite gradient pulse widthhas been
L 2 considered by Mitra and HalperiB1]. They showed that for
P(tlp) (2 )3fo Mk, Dk*dk. 3.6 square shaped pulses of wid#h the measured values for

P4(t|p) are too high by a factor of (£0.35/V\Dg5).
In order to apply this equation to our data, we have to deafhey have not analyzed the exact pulse sequence used in our
with three complications already mentioned above: The meaexperiments, but we can use this expression as a first order
surements only cover a finite rangeknspace, the gradient estimation of the corrections. If we use an effective pulse

pulse widthé is finite, and there is surface relaxation. width of 46/ for our two half-sine-shaped pulses, we get a
Let us first discuss the effect of limited coveragekin correction of 1.01 for the large beads, and 1.12 for the small
space. In Fig. 1, we present the quantity beads, respectively. We have included these corrections in
AnD-0%247 (kMK the data shown below.. '
Pk t)s( mDot) Wf maxM (K, t) K2dk (3.7) In a separate experiment, we determined the surface re-
St max (2m)3 o M(t) laxivity p for the two samples and obtainpe< 10~ m/s for

the small copolymer spheres apeg10"° m/s for the large
as a function ok, In the limit Ka—%°, Ps(Kmax,t) goes  glass beads. The dimensionless parameter characterizing sur-
over to P(t|p). Inspection of Fig. 1 shows clearly that for face relaxationpV,/SDy, is then<2X 102 and 0.21, re-
the largest experimentally accessible wave vectors, the intespectively. These values indicate that surface relaxation will
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25 ; ; both figures it is clear that, as the valuedR decreases, the
Ps(AR,t) values increase as suggested by EBj4). Also
p=0 evident is the expected trend toward increased levels of noise
o7 0=0202 asAR decreases. Even with these statistical limitations, there

is clear evidence in the data presented in Fig. 2 to suggest
| JRAANSPIONS Y o NI | L 8 v that the approach to the limit of E¢2.19 is not simply
: e monotonic. By contrast, in allp=0] examples studied to

3 date, D(t) decreases monotonically between its short and
ol long time limiting values.

— ARa=00314 Clearly, it is of interest to develop a systematic approach

——— AR/a=00628 to the smoothing of the kind of raw data shown in Figs. 2

st 7 AR/a = 0.1257 1 and 3. This is especially true in light of the large number of

P random walkers already used; devoting more CPU time to

i performing even more simulations would lead to only a very

%20 05 10 is small improvement in the quality of the data. Instead of that,

(Dy)"a we adopted a smoothing technique based on singular value

. ) . . decomposition(SVD) [32]. This is a matrix decomposition
~ FIG. 2. For the consolidated simple cubic sphere pack, simulatechnique, applicable to arbitrary rectangular matrices, analo-
tion data for the normalized RTOP are shown for three values Obous to the eigenvalue decomposition of Hermitian matrices.

AR/a. (Herea is the' edge length of the cubic unit_c}zﬂ?h_e hori- Given the raw simulation dat®(R.,,t,), we form the co-
zontal (dot-dashed line represents the asymptotic limit of Eq. variance matrices

(2.19.
Ni
only affect the measurements of the large beads. The effect Anm =2 PRty P(Ry .th), (4.
of finite p on the short time behavior d®y(t|p) has been ’ n=1
studied in[9] with computer simulations, where it was

shown that finite p decreases the measured values of NR
P4(t|p) in quantitative agreement with the experiments. Bn,n’:m§=:1 P(Rm,th) P(Rm,tnr), (4.2
IV. RESULTS whereN; andNg are the number of elements in the temporal

rand spatial arrays. If we denote the set of eigenvectors of
Anm as {ax(Ry)}, and the eigenvectors oB,, as
éﬁk(tn)}, the SVD of P(R,,tp) is

In Figs. 2 and 3 we present numerical simulation data fo
the normalized RTORP (AR,t) for the consolidated simple
cubic and dense random packings. In both sets of calcul
tions we tracked the motion of roughly &alkers and the N
data presented correspond to a sum over the first 4, 8, and 16 —
bins at each timet, The noisy character of these data reflects P(Rm.tn) kzl Mtk R Bl tn). “-3
the fact that, at long times, the probability that a given

walker will remain close to its launch site is very small. In whereN=min{N;,Ng}. Typically, we found that there were
only two or three dominant eigenvalués singular values

Ak, SO that the above summation can be truncated by includ-
ing just these modes. The appearance of a few large singular
values indicates that the data can be approximated by a low
rank space-time matriP(R,,t,). Discarding the smaller
singular values corresponds to removing noise uncorrelated
in space and time, and therefore achieves a smoothing of the
original data.

35

30 - p=0

25 -

%?20 ] | In Figs. 4 and 5 we show the smoothed versions of the
P S avplisty 1 simulation data originally presented in Figs. 2 and 3. In both
gt | i figures the curves correspond A&R=46R and, in addition
0l . N to being smoothed, the curves have been adjusted to repre-
—— (ARVa = 0.0314 sent theAR— 0 limit by the application of Eq(3.4). [Here
sl 4 - Eﬂiﬁifg?ﬁﬁ‘i we have taked’(t) =1, the value appropriate for long times
’ o [21,9].] Shown also in these figures are the two straight line
0,5 - o o - o asymptotes derived from EggL.3) and (2.19. [The values

(D" of D¢ were taken from the eigenvalue calculation for Fig. 4
and from long time diffusion simulations for Fig.]3n Fig.

FIG. 3. For the consolidated random sphere pack, simulatioft the smoothed simulation data are compared to the results
data for the normalized RTOP are shown for three values off the eigenvalue expansidi33]. The agreement between
AR/a. (Herea=2R,, whereR, is the mean sphere diamelefhe  these two calculations is now quite satisfactory. The most
horizontal (dot-dashejlline represents the asymptotic limit of Eq. interesting feature in these figures is the clearly defined
(2.19. maximum in the normalized RTOP. In this connection, note
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FIG. 4. For the consolidated simple cubic packing, eigenvalue FIG. 6. For the unconsolidated simple cubic packing, eigenvalue
expansion results for the normalized RTOP are compared téxpansion results for the normalized RTOP are compared to
smoothed data based on SVD analysis of the corresponding numegmoothed data based on SVD analysis of the corresponding numeri-
cal simulations. The simulation data have been adjusted to theal simulations. The simulation data have been adjusted to the
AR—O limit using Eq.(3.4). The two dot-dashed lines represent AR—0 limit using Eq.(3.4). The two dot-dashed lines represent
the asymptotic limits of Eqg1.3) and(2.19. the asymptotic limits of Eqg(1.3) and(2.19.

. . ) ) RTOP and is responsible for the maximum in Figs. 4 and 5.
that thet=c value(i.e., the horizontal straight line asymp- The |ocation of this maximum defines a new effective pore
tote) shown in these flgures is quite acc.urate_, therefpre, eVeBize parameter whose value is not expected to be greatly
though the maximum ifP¢(t) is not manifest in the simula- hfiuenced by the interfacial surface area. In this sense, this
tion re_sults plot_ted in I_:lg. 5, nev_ertheless the conclusion thate, parameter is analogous to the location of the quasidif-
there is a maximum is very reliable. Bot(t) and Po(t)  fraction peaks seen in thé(k,t) curves, which also first
decrease monotonically &sncreases. That their ratio shows appear at intermediate timg$7,6. We note that the maxi-

a maximum implies that, at intermediate times, the rate afym in Fig. 4 is considerably more pronounced than that in
which P(t) decreases iseducedby the blocking effect of Fig 5 |n disordered systems the existence of the maximum
the grains.[Indeed, in the special case of isolated poresjs controlled by two competing effects. To some extent, the
P(t) does not vanish as—, andP(t) diverges] At very  pounce backeffect will be suppressed by random fluctua-
long times, diffusing particles will move successfully be-tjons in the pore sizes; on the other hand, in disordered sys-
tween neighboring pores; at intermediate times, howevetems diffusing particles may be effectively trapped in very
there is abounce bacleffect when the particles first reflect gmg)| pores and thus make a very large contribution to the
off the walls. This bounce back effect serves to enhance theTop.

In Figs. 6 and 7 we show the smoothed simulation data
corresponding tAAR=44R for the unconsolidated simple
cubic and dense random packin@8s in Figs. 4 and 5 the

curves have been adjusted to represent the W&it-0.] In
20 | p=0 1 Fig. 6 the simulations are compared to the eigenvalue expan-
$=022 sion while in Fig. 7 the simulation data are compared to the
measurements discussed in Sec. Il C. In Fig. 6 the maxi-
mum in the normalized probability is again evident but is
now much less pronounced. On physical grounds this is to be
expected because at higher porosities, diffusing particles can
move more easily into neighboring pores and thaunce
—— Simulation backeffect is diminished. Turning to Fig. 7, we see that the
o | overall comparison between theory and experiment is quite

7 reasonable and that both the measurements and the simula-
S tions lie above the long time asymptote. Together with the
0 ‘ ‘ s \ data presented in Fig. 5, these results suggest that the be-
00 oS Y o 20 28 havoir of P(t) in disordered systems may be qualitatively

similar to that found in periodic models. We intend to ex-

FIG. 5. For the consolidated dense random sphere pack, sim@lore this issue further with additional experimental and nu-
lation results for the normalized RTOP are shown after Svpmerical work.
smoothing. The simulation data have been adjusted ta\fRe-0 The calculations described above were all carried out with
limit using Eq. (3.4. The two dot-dashed lines represent the p=0. Intuitively, we expect that interfacial relaxation will
asymptotic limits of Eqs(1.3) and(2.19. strengthenthe maximum observed iR4(t). With nonzero

25

P(AR1)

10 -
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FIG. 7. For the unconsolidated dense random sphere pack, simu-
lation results for the normalized RTOP are compared with experi-
mental data. The simulation data have been adjusted to the
AR—0 limit using Eg.(3.4). The two dot-dashed lines represent
the asymptotic limits of Eqg1.3) and(2.19. The six experimental
points discussed in connection with Fig. 1 are also shown. Note
that, for the large beads used in some of the measuremeistsiot
entirely negligible. Nevertheless, its rather small valGee.,
pVp/SDy=0.21), plus the fact that those measurements correspond FIG. 8. The effects of surface relaxation on the RTOP are illus-

only to the short time asymptotic regime, mean that the result§rated for the touchin :
- ; g sphefapper paneland overlapping sphere
should not differ very much from the idea=0 case. (lower panel simple cubic packings. Note that, to leading order, the

short time behavior oP4(t) is not affected byp [9].
p, the particles most likely to survive are those that do not 0 e 9]

move very far from their point of origin and therefore do not thjs function exhibits considerably more varied and interest-
interact strongly with the_pore—graln interface. _Thus, in Fig. 8ing behavior tharD(t). We believe thatP((t), as well as
we see that, for the periodic sphere packs discussed above,(t|p) for p+0, will be important indicators of the struc-

eigenvalue calculations indeed indicate that the maximum ifyre of the underlying porous media. Our principal findings
P4(t) is enhanced in th@a/Dy=1 case. We expect that zre as follows:

random walk simulations would exhibit the same effeCtS; (a) In Ordered(periodio porous med|a35(t) can be cal-

they would, however, be considerably more involved thargylated by either eigenvalue expansions or numerical simu-
the corresponding eigenvalue calculatiphs,28. Here too,  |ations. The two methods are in excellent agreemémtin
the values oP() are shown as horizontal straight lines— ordered(periodiq porous medid4(t) crosses above its long
they were calculated from the low lying diffusion eigenstatestjme asymptote and exhibits a well defined maximum at in-
[see Eq(2.19]. termediate times. This behavior is predicted by a theorem
As we noted above, the calculations presented here affat constrains the behavior of the lowest band of eigenval-
not intended to describe thehort timebehavior of Ps(t)  yes. Physically, this maximum is associated with the
with great accuracy. Nevertheless, it is of interest to examingeflectionof diffusing particles from the pore grain interface.
the trends seen in Figs. 4—7. For the two low porosity sys¢c) In the random systems studied here, numerical simula-
tems(Figs. 4 and pthe calculated results clearly curve up- tions again suggest th@(t) will exhibit a maximum at
ward from their short time asymptotes. For=0.38(Fig. 7)  intermediate times. In unconsolidated dense random sphere
the calculations remain essentially in line with the short timepacks' the simulation data and PGSE measurements are gen-
asymptote up to surprisingly long times. Finally, at the high-erally in good agreementd) Systematic trends are evident
est porosity(Fig. 6), the calculated curve has crossed overin the manner at whichP4(t) moves away from its
and now lies below the short time asymptote. This behaviopsymptotic limit at short times. This behavior is again related

is, of course, consistent with the appearance of a more prqp the degree of hindrance to diffusion caused by the solid
nounced maximum at intermediate times in the lower porosmatrix.

ity systems.

(D, 1)"a
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