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Restricted diffusion and the return to the origin probability at intermediate and long times
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Pulsed field gradient spin echo magnetic resonance measurements on fluid saturated porous media provide a
natural framework for the examination of a classic problem in mathematical physics. We examine the overall
time dependence of the return to the origin probability~RTOP! with particular emphasis on the intermediate
and long time behavior. In the long time limit this probability is related to the electrical conductivity. In
periodic geometries we compare the results of eigenvalue expansions and numerical simulations. Here we find
that, when the diffusion length is roughly equal to a pore diameter, the normalized RTOP,Ps(t), shows a
maximum. Thus, the approach to the long time limit isnot monotonic. We show that the existence of this
maximum can be predicted based on variational arguments. For disordered systems, simulations and experi-
ments are found to be in agreement and again suggest that the behavoir ofPs(t) is not monotonic.
@S1063-651X~97!06304-6#

PACS number~s!: 05.60.1w, 66.10.Cb
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I. INTRODUCTION

Transport and diffusion in three-dimensional porous m
dia are important in connection with problems relating to
wide range of materials, e.g., reservoir rocks, catalytic be
foams, and ceramic composites. In an important subse
these problems one is concerned with systems comprise
an insulating, solid granular matrix saturated with a condu
ing pore fluid. Within this framework, the transport proble
is closely related to the inverse problem studied by Kac i
classic paper entitled ‘‘Can one hear the shape of a drum
@1#. ~de Gennes@2# has studied a related problem in the co
text of magnetization decay in a bounded region.! Briefly,
the question is whether or not the structure~i.e., shape! of the
boundary can be determined from a knowledge of the di
sion equation’s eigenvalue spectrum@3–5#.

An important aspect of restricted diffusion is the choice
boundary condition at the pore-matrix interface. Howev
the issues of interest in this paper are easily understood
with the simple assumption that the boundaries are perfe
reflecting~i.e., that interfacial absorbtion can be neglecte!.
Making this assumption, we consider two of the time (t)
dependent quantities studied by Kac@1#, the diffusion coef-
ficient, D(t)[^ur (t)u2&/(6t), and the spectral function
P(t)[(1/Vp)(le

2lt. Here r (t) denotes the position of a
diffusing particle and$l% are the eigenvalues of the equ
tions describing diffusion in the pore space of volumeVp .
We will see thatP(t) is related to the probability that
diffusing particle returns to its point of origin at timet. By
convention, bothD(t) andP(t) are usually normalized with
respect to their values for unrestricted diffusion. ForD(t)
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this amounts to simply dividing byD0, the diffusion constant
for the bulk fluid. Similarly, for P(t) we divide by
P0(t)5(4pD0t)

23/2 to obtain the normalized return to th
origin probability

Ps~ t ![
~4pD0t !

3/2

Vp
(
l

e2lt. ~1.1!

Interestingly,D(t) andPs(t) have in common the fact that
as t→0, the variation of both functions is determined by
length scale of physical interest,Vp /S, the ratio of the pore
space volume to its surface area@6–9#:

D~ t !/D0512
4S

9ApVp

AD0t1O~D0t !, ~1.2!

Ps~ t !511
Ap

2

S

Vp
AD0t1O~D0t !. ~1.3!

Physically, the signs of these corrections are easily und
stood: diffusive motion in the pore space is hindered by
solid matrix,reducingthe mean square distance traveled
the particles whileincreasingthe return to the origin prob-
ability ~RTOP!.

At long times, bothD(t) andPs(t) tend to limiting values
that depend only on the lowest lying eigenvalues. Howev
at intermediate times they both depend on the entire sp
trum of eigenvalues, albeit in somewhat different ways.
number of theoretical and experimental studies have sh
thatD(t) decreases monotonically from the valueD0 to the
4225 © 1997 The American Physical Society
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long time limit Deff , which can be determined, indepe
dently, from the dc electrical conductivity,seff @10,11#. Very
little, however, is known about the overall time dependen
of Ps(t), except that, in periodic systems without any inte
facial relaxation, this quantity has been shown to appro
the long time asymptotef21(D0 /Deff)

3/2 @8#. ~Here the po-
rosity f denotes the volume fraction assigned to the p
space.! Accordingly, we have undertaken a detailed study
this quantity and have found thatPs(t) exhibits considerably
more varied and interesting behavior thanD(t). For this rea-
son we believe thatPs(t) will be an important indicator of
the structure of the underlying porous media. Our findin
are as follows:

~a! In periodic porous mediaPs(t) can be calculated by
either eigenvalue expansions or by numerical simulations
the absence of interfacial relaxation, both techniques pre
thatPs(t) crosses above its long time asymptote and exhi
a well definedmaximumat intermediate times. This is en
hanced by either interfacial relaxation or grain consolidat
to lower porosities.

~b! This behavior is predicted by a new theorem that c
strains the shape of the lowest eigenvalue band. Additio
developments in this direction are discussed by Bergm
@12#.

~c! In disordered bead packs numerical simulations p
dict nonmonotonic behavior forPs(t). As in the ordered
case, this effect becomes more pronounced as the bead
is consolidated at lower porosities. Experimental results
unconsolidated bead packs are in reasonable agreement
the simulations, again suggesting nonmonotonic behavior
Ps(t).

~d! Systematic trends appear to relate the way thatPs(t)
moves away from its short time behavior~1.3! to the tortu-
osity of the pore space.

II. PGSE MEASUREMENTS AND THE RETURN
TO THE ORIGIN PROBABILITY

Pulsed field gradient spin echo~PGSE! nuclear magnetic
resonance~NMR! measurements provide an important pro
of the restricted diffusive motion of water molecules throu
porous media and biological tissue@13–16#. There have been
a number of recent investigations regarding the relations
between the microgeometry that restricts the motion of wa
molecules and the PGSE amplitude@17–24#. In a PGSE ex-
periment, the spin echo radio frequency pulse sequenc
combined with the application of two gradient pulses, se
rated by a timet, each of which briefly imposes a spati
dependence on the static magnetic field. In the limit that
durationd of each gradient pulse approaches zero as its
plitudeg approaches infinity~such thatdg remains finite! the
interpretation of this measurement simplifies considera
Physically, the two gradient pulses can then be viewed
instantaneously dephasing and then rephasing the spin
volved in the underlying spin echo measurement. In the
sence of diffusion, these two effects cancel exactly. Ho
ever, if a spin originally atr diffuses tor 8 at timet, when the
second gradient pulse is applied, its net phase chang
k•(r2r 8), wherek 5 gdg, g is the gyromagnetic ratio, an
g is a vector along the gradient direction with magnitudeg.
In this case, the decay of the echo amplitude is directly
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lated to the problem of self-diffusion in restricted geom
etries. In practice, however, PGSE measurements in po
media are complicated by the fact that the gradient pulses
never infinitely sharp so that diffusionduring the pulse ap-
plication must be taken into account. The implications of t
effect will be discussed in Sec. III C; the following develo
ment will assume that ideal conditions are obtained so
the PGSE amplitude,M (k,t), can be expressed in terms o
the Fourier transform of the diffusion propagato
G(r ,r1 ,t).

A. General equations

Given the molecular diffusion coefficientD0 of the bulk
fluid, the propagatorG(r ,r1 ,t), for r and r1 in the pore
space, is defined by the equations

]G~r ,r1 ,t !

]t
5D0¹

2G~r ,r1 ,t !, ~2.1!

G~r ,r1 ,t501!5d3~r2r1!, ~2.2!

D0n̂$¹G~r ,r1 ,t !1rG~r ,r1 ,t !% rPS50, ~2.3!

wheren̂ is the outward~from pore to grain! directed normal
unit vector at the pore-grain interfaceS, and the paramete
r determines the strength of the enhanced interfacial s
relaxation. Under the assumptions outlined above, the PG
amplitudeM (k,t) is given by the double spatial Fourie
transform

M ~k,t !5
1

Vp
E
Vp

drE
Vp

dr1G~r ,r1 ,t !e
2 ik•~r2r1!, ~2.4!

whereVp is the total volume of the pore space. The quant
M (t)[M (k50,t) represents the total magnetization of t
system. Forr50 it has the constant value 1, but forr.0 it
decays in time fromM (0)51 to M (`)50. For smallk,
M (k,t) has the simple form@6,7#

M ~k,t !

M ~ t !
5e2D~ t !k2t. ~2.5!

This relation defines the effective time dependent diffus
coefficientD(t), which characterizes the long waveleng
behavior of the PGSE amplitude. In the limitr→0,
Deff[D(t→`) is directly related to the electrical conductiv
ity of the fluid saturated porous medium and can be de
mined experimentally by routine measurements@11#. The
time dependent diffusion coefficientD(t) can be calculated
either from values ofM (k,t) at smallk vectors or from the
mean square displacement of a diffusing partic
^@r (t)#2&56D(t)t.

In principle, by integrating Eq.~2.4! over all of k space,
we obtain

P~ tur![E M ~k,t !
dk

~2p!3
5

1

Vp
E
Vp

G~r ,r ,t !dr . ~2.6!
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By definition, this is the RTOP density averaged over
possible initial positions of the diffusing particle. Clearl
this quantity carries information about the degree of rest
tions to diffusion in a porous medium. Equation~2.6! also
provides a way of obtaining the RTOP from PGSE data.
free space the time dependence ofP(tur) can be evaluated
analytically, P(tur)→P0(t)5(4pD0t)

23/2. As long as we
are dealing with a percolating~interconnected! pore space, it
is clear that the RTOP must decay to zero at long times
we also haverÞ0, then part of the enhanced decay w
time of P(tur) is due to the decay of the total spin polariz
tion, which is described byM (t). Therefore, in order to iso
late the effects of the interface on the RTOP, we norma
P(tur) with respect to bothP0(t) andM (t):

Ps~ tur![
P~ tur!

M ~ t !P0~ t !
. ~2.7!

In order to make contact with the discussion in the Introd
tion, we note that

lim
r→0

P~ tur!5P~ t !, ~2.8!

lim
r→0

Ps~ tur!5Ps~ t !. ~2.9!

B. Results for periodic systems

The diffusion propagator can always be expanded
terms of a set of orthonormal diffusion eigenstates@22,24#.
When the microstructure is periodic, the eigenfunctions h
the Bloch-Floquet form,unq(r )e

iq•r2lnqt, wherelnq is the
eigenvalue,n is a band index,q is a wave vector in the firs
Brillouin zone of reciprocal space, and the periodic functio
unq(r ), satisfies the following equations:

lnqunq~r !1D0~¹1 iq!2unq~r !50, ~2.10!

$D0n̂•~¹1 iq!unq~r !1runq~r !%rPS50, ~2.11!

E
Vp

dVunq* ~r !umq~r !5dnm . ~2.12!

The functionunq(r ), restricted to the pore spaceVp , can be
expanded in a Fourier series

up~r !unq~r !5(
G

ũnq~G!eiG•r, ~2.13!

whereup(r ) is the characteristic~or indicator! function of
the pore space, equal to 1 inside that pore space and
elsewhere. The diffusion propagator can now be written

G~r ,r 8,t !5(
nq

e2lnqtunq~r !unq* ~r 8!eiq•~r2r8!. ~2.14!
ll

-

n

If

e

-

n

e

,

0

The PGSE amplitude has a particularly concise expressio
terms of the Fourier expansion coefficientsũnq(G)

M ~k,t !5
Vp

f2(
n

e2lnqt@ uũnq~Gk!u2#q5k2Gk
, ~2.15!

wheref[Vp /V is the porosity andGk is the reciprocal lat-
tice vector that is closest tok. For smallk, we haveGk50
andq5k.

To evaluate the RTOP, we note that within the pres
framework Eq.~2.7! reduces to

Ps~ tur!5
~4pD0t !

3/2

VpM ~ t ! (
nq

e2lnqt, ~2.16!

where

M ~ t !5
Vp

f2(
n

e2ln0tuũn0~0!u2. ~2.17!

From the above analysis it is clear that, in periodic s
tems, the RTOP carries information about the connectivity
the pore space. At long times, bothPs(t) andM (t) depend
only on the lowest lying eigenstates. In the case ofM (t) this
means the stateu00 , while in the case ofPs(t) this means
the smallq states of the lowest bandu0q . In the case of a
porous medium with cubic symmetry, these low lying eige
values have the form

l0q5l00~r!1Deff~r!q21O~q4!, ~2.18!

where l0050 if r50. @The qualitative dependence o
Deff(r) on r is discussed in Refs.@11# and@24#.# Thus, for a
periodic cubic porous medium, the sums overn in both Eqs.
~2.16! and ~2.17! reduce to the single termn50, while the
sum overq in Eq. ~2.16! becomes a Gaussian integral, with
result that partially cancels the prefactor (4pD0t)

3/2. The
remaining exponential time dependencee2l00t also cancels,
and we get

lim
t→`

Ps~ tur!5
V

u*VpdVu00~r !u
2 S D0

Deff~r! D
3/2

~2.19!

>
1

f S D0

Deff~r! D
3/2

, ~2.20!

where we used the Cauchy-Schwartz inequality, along w
Eq. ~2.12!, to get an upper bound on the integral

U E
Vp

dVu00~r !U2<E
Vp

dVuu00u2E
Vp

dV5Vp . ~2.21!

For r50, u00(r )51/AVp5const @23#, and the inequality
sign in these equations becomes an equality. The right-h
side ~rhs! of Eq. ~2.19! was first proposed as the limitin
form for Ps(t) at long times based on a phenomenologi
ansatz@6#, which assumed that the PGSE amplitude is giv
approximately, by the convolution of an effective Gauss
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and the pore space two point correlation function@6,7#. Here
we haveprovedthis result for the quantity

Ps~ t ![ lim
r→0

Ps~ tur! ~2.22!

for any periodic cubic porous medium. Otherwise, wh
rÞ0, the rhs of Eq.~2.19! is only a lower bound for the
asymptote ofPs(t). In fact, the results of Eqs.~2.19! and
~2.20! can be extended to more general~i.e., anisotropic!
periodic structures, and to certain nonperiodic structures
well @12#.

Most of the results presented in this paper will conce
the limiting case of Eq.~2.22!. Here we can make a precis
statement about the wayPs(t) approaches its long time as
ymptote. Following the same idea that led to Eq.~2.19!, we
can write the following expression for the long time behav
of Ps(t) for that case:

Ps~ t !>
~4pD0t !

3/2

f E d3q

~2p!3
e2l0qt. ~2.23!

We now show that, not only isl0q well approximated by the
parabolaDeffq

2 for small q, but that l0q lies below that
parabola forarbitrary q. Due to the variational properties o
the diffusion problem,l0q can be obtained as the minimu
value of the following integral@12#:

D0E
Vp

dVu¹cu2, ~2.24!

wherec(r ) is an arbitrary normalized Bloch function, i.e.,

E
Vp

dVucu251, ~2.25!

c~r1a!5eiq•ac~r ! ~2.26!

for any lattice vectora. We can therefore get an upper bou
on l0q by using the following trial function in Eq.~2.24!:

c~r !5
eiq•f~r !

AVp

, ~2.27!

wheref a(r ) is the solution of a stationary diffusion proble
in the same porous medium

¹2f a~r !50 inVp, ~2.28!

] f a

]n
50 at the interface, ~2.29!

f a~r !2r a is a periodic function. ~2.30!

In this way we get, for a system with a periodic cubic m
crostructure,

l0q,D0

1

Vp
E
Vp

dVu¹~q•f!u25Deff q
2. ~2.31!
as

n

r

The last equality is related to the connection, alluded to p
viously, betweenDeff and the bulk effective conductivity
seff of the same porous medium, where the grains are in
lating and the pore space has a nonzero conductivitys0 @23#:

Deff

D0
5
1

f

seff

s0
5

1

fF
. ~2.32!

Here F is the so-called ‘‘formation factor’’ of the porou
medium. Thus,~2.28!–~2.30! can be reinterpreted as equ
tions for the electric potential in such a system. In that ca
it is well known that, for an electrically isotropic meta
insulator composite, we have@25,26#

seff

s0
dab5

1

VEVpdV~¹f a•¹f b!. ~2.33!

From Eq.~2.31! it follows that, for sufficiently long times,
we can write

Ps~ t !.
~4pD0t !

3/2

f E d3q

~2p!3
e2Deffq

2t5
1

f S D0

Deff
D 3/2.

~2.34!

Thus,Ps(t) approaches itst5` value from above, and con
sequently itmust have a maximum at some intermedia
time.

These results actually have a very general validity: th
can be extended to the case of nonzero surface relaxa
rÞ0, to an anisotropic medium, and to a nonperiodic poro
medium@12#.

III. COMPUTATIONAL AND EXPERIMENTAL
TECHNIQUES

A. Random walker simulations

Given a direct representation of the pore geometry,
PGSE amplitude can be calculated by random walk simu
tions of diffusing particles@9,27,28#. In the present paper we
will be concerned with two systems, both of which are bas
on the packing of spherical grains. The first is an orde
structure in which identical grains are arranged on a sim
cubic lattice; the second is a disordered three-dimensio
packing of nearly monosized spherical grains. The sec
system is comprised of a 203 203 40 dense random pack
ing with periodic boundary conditions in thex andy direc-
tions @9,27,28#. Because this packing isnot periodic in the
z direction, random walkers are only released within a ba
centered at the system’s midheight. The packing is la
enough in thez direction that, in the time scales of intere
here, walkers never diffuse to reach the system’s top or b
tom. This packing is large enough to provide a reasona
average over the different configurations found in disorde
sphere packs. The grain radii for the dense random pac
vary by68% to reflect the experimental variations prese
in nominallymonosizedpackings. The porosity of both sys
tems can be varied by application of the grain consolidat
algorithm @29#; the centers of the grains remain fixed whi
the sphere radius is increased.

In the present simulations random walkers move throu
the pore space taking steps of fixed lengthe, with the clock
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advancing byt5e2/(6D0) at each step. Since we are prim
rily interested in the behavior of long time diffusion, rel
tively large step sizes were employed. For the cubic pack
e was taken to be equal to 0.01a, wherea is the~fixed! edge
length of the unit cell. In the dense random packin
e50.02R0, whereR0 is the midpoint of the original distri-
bution of sphere radii.~When the packings are unconso
dated,a/2 is the radius of the spheres on the cubic lattice,
the two values ofe are roughly comparable.! Walkers are
launched from randomly chosen positions (x0 ,y0 ,z0) within
the pore space and, at each time step of sizet, advance from
their current position (x1 ,y1 ,z1) to a new position
(x2 ,y2 ,z2) on the surface of a sphere of radiuse. Implemen-
tation of the boundary condition~2.3! is, in principle,
straightforward@28# as long as the absorption strengthr is
reasonably weak~as is the case in almost all experiments
interest!. In fact, all of the simulation results to be discuss
in this paper are confined to the caser50. In this limit we
haveblind reflection at the pore-grain interface; the walk
returns to its attempt position and the clock advances by
time stept. Because it is well known that long time diffusio
behavior is difficult to simulate, and because a nonzero va
of r exacerbates that situation@11#, we have chosen to focu
here on ther→0 limit. Even with this assumption, we wil
see that the statistical uncertainties involved in the calc
tion of Ps(t) are quite formidable. To evaluate the RTOP,
a prespecified array of times$tn% we calculate the number o
walkers whose distance from their starting point lies betw
Rm21[(m21)dR andRm[mdR. The bin sizedR must be
comparable to~but not commensurate with! the random walk
step size; in the present simulations we takedR/a @or
dR/(2R0)# equal top/400. Thus the simulations provide
discrete representation of the probability,P(Rm ,tn), that
walkers will be located in themth spatial bin after timetn .
In practice, of course, a given walker will never returnex-
actly to its point of origin. Accordingly, we are led to con
sider the quantity

P~DR,t !5
1

Vp
E
Vp

dr1E
ur u<DR

drG~r1 ,r1r1 ,t !. ~3.1!

P(DR,t) is by definition the probability that a diffusing pa
ticle will return to withinDR of its starting point after time
t, averaged over all possible initial positions@8,9#. ~In prac-
tice, the values ofDR employed in our simulations wer
multiples of 4dR, so that the inequalityDR.e was always
satisfied.! For the case of diffusion in a homogeneous flu

P~DR,t !→P0~DR,t !5
4p~DR!3

3~4pD0t !
3/2, ~3.2!

as long as (DR)2!4D0t. By analogy with Eq.~2.7!, we
introduce the normalized quantityPs(DR,t):

Ps~DR,t !5
P~DR,t !

P0~DR,t !
. ~3.3!

To leading order inDR, one has the expansion@21,9#
g

,

o

f

e

e

-
t

n

,

Ps~DR,t !5Ps~DR50,t !F12
3G~ t !

16

S

Vp
DR1O„~DR!2…G .

~3.4!

where

G~ t ![
^G~r ,r ,t !&S

^G~r ,r ,t !&Vp
. ~3.5!

G(t) is the ratio of the RTOP for particles originating on th
interface to that for particles originating in the bul
G(t→0)52 and at long timesG(t)→1. This equation indi-
cates that calculations with nonzeroDR are expected toun-
derestimatethe truePs(t).

B. Fourier expansion of diffusion eigenfunctions

In the Fourier method, the eigenstates are found by s
ing a matrix eigenvalue problem for the Fourier expans
coefficientsũnq(G), obtained from the differential equatio
~2.10! by using expansions such as Eq.~2.13!. The transfor-
mation to a matrix eigenvalue problem is complicated by
fact that the boundary condition~2.11! must also be imposed
For the nonabsorbing case (r50), this was done by extend
ing Eq. ~2.10! to the entire volume Vof pore space plus
matrix space in such a way that Eq.~2.11! is automatically
satisfied@22,23#. The resulting matrix eigenvalue problem
was then solved by standard numerical methods. Fo
system comprised of a simple cubic array of spheri
obstacles, we included reciprocal lattice vectorsG
5(2p/a)(nx ,ny ,nz) with integer componentsnx ,ny ,nz
ranging from24 to 4. This translates to a matrix of siz
7293729. Using this approach, it was possible to treat sm
nonoverlapping obstacles, as well as large, overlapping o
To evaluate the RTOP, theq sum in Eq.~2.16! was accom-
plished by solving Eqs.~2.10!–~2.12! for 512 differentq
values uniformly distributed over the first Brillouin zone
reciprocal space.

When there is some absorption at the pore-matrix in
face, the eigenstates were found by expanding them i
series ofr50 eigenstates. The eigenvalue problem of E
~2.10!–~2.12! is thereby translated into a matrix eigenval
problem where the eigenvectors are the required expan
coefficients@24#. Again, this was solved using standard n
merical methods.

To conclude this discussion we note that numerical sim
lation and eigenvalue techniques are complementary in t
treatment of the RTOP. From Eq.~2.16! it is clear that the
eigenvalue expansion will converge rapidly at long time
However, at short times the results will be considerably l
reliable because the higher eigenvalue bands~i.e., lnq with
large values of the band indexn) cannot be calculated ver
accurately. By contrast, in the simulations the short time
havior is relatively easy to calculate@9#, while at long times
it becomes increasingly difficult to obtain good statistics, a
this limits the accuracy of the subsequentP(t) estimates.

C. PGSE experiments

We have applied the PGSE technique to meas
Ps(tur) in two samples comprised of unconsolidated ra
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domly packed spherical beads, saturated with distilled wa
The diameter of the beads, 2R0, was in the range
380<2R0<515 mm in the first sample and 47<2R0
<57mm in the second sample. The measurements were
formed with a GE 2.0 T CSI-II imaging spectrometer ope
ating at 85.56 MHz for protons and equipped with se
shielding gradient coils capable of delivering a maximu
gradient strength of 20 G/cm. The measurements on
smaller beads were performed using self-shielding grad
coils capable of delivering a maximum gradient strength
280 G/cm. The temperature of the sample was controlle
25.0 °C.

We determined independently the ratioS/Vp for each
sample by an analysis of the short time behavior of the
fusion coefficientD(t) @6,10#. The measured values wer
(48.4mm)21 and (5.3mm)21, respectively. This is consisten
with the bead diameters stated above. For monosized sp
packs, the ratioS/Vp is related to the bead diameter b
S/Vp56 (12f)/(2R0f). Assuming a random packing po
rosity of f50.38, we obtain S/Vp'(45.7mm)21 and
(5.3mm)21, respectively. For each sample, we have m
suredM (k,t) as a function ofk for three diffusion timest.
The times were 250 ms, 1 s, and 2 s for the large beads,
160 ms, 500 ms, and 1.5 s for the small beads. The N
pulse sequence used is based on the stimulated spin e
Each gradient pulse is divided into a pair of half-sine-sha
bipolar pulses, separated by ap pulse. This attenuates an
effects due to background gradients. A detailed descrip
of this pulse sequence was given by Latouret al. @30#. The
duration of each half-sine-shaped pulse wasd51.5 ms. The
wave vector k was changed by increasing the gradie
strengthg while keepingd fixed. In our measurements,g
was stepped up in equal intervals up to some valuegmax.
The maximum gradient strengthgmax was adjusted for each
sample and diffusion time by requiring that the signal d
cayed to about 331024 of its initial value and became com
parable to the noise level. We measured separately the
earity of the spectrometer and corrected for any deviatio
The measured echo amplitudes were normalized with res
to the extrapolated amplitudeM (t)[ limk→0M (k,t), as de-
scribed in @20#. This corresponds to a normalization wi
respect to the number of surviving walkers after timet.

If the medium being studied is isotropic, Eq.~2.6! reduces
to a radial integration

P~ tur!5
4p

~2p!3
E
0

`

M ~k,t !k2dk. ~3.6!

In order to apply this equation to our data, we have to d
with three complications already mentioned above: The m
surements only cover a finite range ink space, the gradien
pulse widthd is finite, and there is surface relaxation.

Let us first discuss the effect of limited coverage ink
space. In Fig. 1, we present the quantity

Ps~kmax,t ![
~4pD0t !

3/24p

~2p!3
E
0

kmaxM ~k,t !

M ~ t !
k2dk ~3.7!

as a function ofkmax. In the limit kmax→`, Ps(kmax,t) goes
over toPs(tur). Inspection of Fig. 1 shows clearly that fo
the largest experimentally accessible wave vectors, the i
r.
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gral in Eq. ~3.7! has not yet fully reached its asymptot
value. The limitations on the wave vector set the small
distance,lmin , that can be probed by PGSE techniques, ty
cally lmin;1/kmax. In general, there might be structural fe
tures on a length scale smaller thanlmin and the quantity
Ps(tur) cannot be extracted. However, for the largest gra
ents used,lmin;1/kmax is smaller than all the length scale
characterizing the pore geometry in our samples, and
may use the asymptotic behavior ofM (k,t) for large values
of k @11#,

M ~k,t !uk→`5
S

Vp

2p

k4
^G~r ,r ,t !& rPS;

1

k4
, ~3.8!

where^G(r ,r ,t)& rPS is the probability of return to the origin
for spins initially on the pore-grain interfaceS. Our mea-
surements show thatM (k,t) has reached thisk24 behavior at
the largestk values in all cases and that Eq.~3.8! can be used
to extrapolateM (k,t). In Fig. 1 this extrapolation is repre
sented by the dashed lines, while the values of the extra
Ps(tur) are shown on the right along with their estimat
uncertainties.

The correction for finite gradient pulse widthd has been
considered by Mitra and Halperin@31#. They showed that for
square shaped pulses of widthd, the measured values fo
Ps(tur) are too high by a factor of (110.3S/VpAD0d).
They have not analyzed the exact pulse sequence used i
experiments, but we can use this expression as a first o
estimation of the corrections. If we use an effective pu
width of 4d/p for our two half-sine-shaped pulses, we ge
correction of 1.01 for the large beads, and 1.12 for the sm
beads, respectively. We have included these correction
the data shown below.

In a separate experiment, we determined the surface
laxivity r for the two samples and obtainedr,1026 m/s for
the small copolymer spheres andr51025 m/s for the large
glass beads. The dimensionless parameter characterizing
face relaxation,rVp /SD0, is then,231023 and 0.21, re-
spectively. These values indicate that surface relaxation

FIG. 1. Normalized integral of the measured echo amplitu
M (k,t) vs upper limit of integrationkmax for two different samples
and three diffusion times for each sample. The dashed lines indi
the extrapolation of the integral as discussed in the text. The
trapolated values forkmax→` are indicated on the right with erro
bars.
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only affect the measurements of the large beads. The e
of finite r on the short time behavior ofPs(tur) has been
studied in @9# with computer simulations, where it wa
shown that finite r decreases the measured values
Ps(tur) in quantitative agreement with the experiments.

IV. RESULTS

In Figs. 2 and 3 we present numerical simulation data
the normalized RTOPPs(DR,t) for the consolidated simple
cubic and dense random packings. In both sets of calc
tions we tracked the motion of roughly 106 walkers and the
data presented correspond to a sum over the first 4, 8, an
bins at each time,t. The noisy character of these data refle
the fact that, at long times, the probability that a giv
walker will remain close to its launch site is very small.

FIG. 2. For the consolidated simple cubic sphere pack, sim
tion data for the normalized RTOP are shown for three values
DR/a. ~Herea is the edge length of the cubic unit cell.! The hori-
zontal ~dot-dashed! line represents the asymptotic limit of Eq
~2.19!.

FIG. 3. For the consolidated random sphere pack, simula
data for the normalized RTOP are shown for three values
DR/a. ~Herea52R0, whereR0 is the mean sphere diameter.! The
horizontal~dot-dashed! line represents the asymptotic limit of Eq
~2.19!.
ct

f

r

a-

16
s

both figures it is clear that, as the value ofDR decreases, the
Ps(DR,t) values increase as suggested by Eq.~3.4!. Also
evident is the expected trend toward increased levels of n
asDR decreases. Even with these statistical limitations, th
is clear evidence in the data presented in Fig. 2 to sug
that the approach to the limit of Eq.~2.19! is not simply
monotonic. By contrast, in all@r50# examples studied to
date,D(t) decreases monotonically between its short a
long time limiting values.

Clearly, it is of interest to develop a systematic approa
to the smoothing of the kind of raw data shown in Figs.
and 3. This is especially true in light of the large number
random walkers already used; devoting more CPU time
performing even more simulations would lead to only a ve
small improvement in the quality of the data. Instead of th
we adopted a smoothing technique based on singular v
decomposition~SVD! @32#. This is a matrix decomposition
technique, applicable to arbitrary rectangular matrices, an
gous to the eigenvalue decomposition of Hermitian matric
Given the raw simulation data,P(Rm ,tn), we form the co-
variance matrices

Am,m85 (
n51

Nt

P~Rm ,tn!P~Rm8 ,tn!, ~4.1!

Bn,n85 (
m51

NR

P~Rm ,tn!P~Rm ,tn8!, ~4.2!

whereNt andNR are the number of elements in the tempo
and spatial arrays. If we denote the set of eigenvectors
Am,m8 as $ak(Rm)%, and the eigenvectors ofBn,n8 as
$bk(tn)%, the SVD ofP(Rm ,tn) is

P~Rm ,tn!5 (
k51

N

lkak~Rm!bk~ tn!, ~4.3!

whereN5min$Nt ,NR%. Typically, we found that there were
only two or three dominant eigenvalues~or singular values!
lk , so that the above summation can be truncated by inc
ing just these modes. The appearance of a few large sing
values indicates that the data can be approximated by a
rank space-time matrixP(Rm ,tn). Discarding the smaller
singular values corresponds to removing noise uncorrela
in space and time, and therefore achieves a smoothing o
original data.

In Figs. 4 and 5 we show the smoothed versions of
simulation data originally presented in Figs. 2 and 3. In b
figures the curves correspond toDR54dR and, in addition
to being smoothed, the curves have been adjusted to re
sent theDR→0 limit by the application of Eq.~3.4!. @Here
we have takenG(t)51, the value appropriate for long time
@21,9#.# Shown also in these figures are the two straight l
asymptotes derived from Eqs.~1.3! and ~2.19!. @The values
of Deff were taken from the eigenvalue calculation for Fig
and from long time diffusion simulations for Fig. 5.# In Fig.
4 the smoothed simulation data are compared to the res
of the eigenvalue expansion@33#. The agreement betwee
these two calculations is now quite satisfactory. The m
interesting feature in these figures is the clearly defin
maximum in the normalized RTOP. In this connection, no

-
f

n
f



-
ve
-
th

s
a

es

e-
ve
t
th

5.
re
atly
this
idif-

t in
um
the
a-
sys-
ry
the

ata

an-
the
xi-
is
be
can

he
uite
ula-

the
be-
ly
x-
u-

ith
ll

lu

e
th
nt

im
VD

he

lue
to
eri-
the
nt
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that thet5` value ~i.e., the horizontal straight line asymp
tote! shown in these figures is quite accurate, therefore, e
though the maximum inPs(t) is not manifest in the simula
tion results plotted in Fig. 5, nevertheless the conclusion
there is a maximum is very reliable. BothP(t) and P0(t)
decrease monotonically ast increases. That their ratio show
a maximum implies that, at intermediate times, the rate
which P(t) decreases isreducedby the blocking effect of
the grains.@Indeed, in the special case of isolated por
P(t) does not vanish ast→`, andPs(t) diverges.# At very
long times, diffusing particles will move successfully b
tween neighboring pores; at intermediate times, howe
there is abounce backeffect when the particles first reflec
off the walls. This bounce back effect serves to enhance

FIG. 4. For the consolidated simple cubic packing, eigenva
expansion results for the normalized RTOP are compared
smoothed data based on SVD analysis of the corresponding num
cal simulations. The simulation data have been adjusted to
DR→0 limit using Eq.~3.4!. The two dot-dashed lines represe
the asymptotic limits of Eqs.~1.3! and ~2.19!.

FIG. 5. For the consolidated dense random sphere pack, s
lation results for the normalized RTOP are shown after S
smoothing. The simulation data have been adjusted to theDR→0
limit using Eq. ~3.4!. The two dot-dashed lines represent t
asymptotic limits of Eqs.~1.3! and ~2.19!.
n

at

t

,

r,

e

RTOP and is responsible for the maximum in Figs. 4 and
The location of this maximum defines a new effective po
size parameter whose value is not expected to be gre
influenced by the interfacial surface area. In this sense,
new parameter is analogous to the location of the quas
fraction peaks seen in theM (k,t) curves, which also first
appear at intermediate times@17,6#. We note that the maxi-
mum in Fig. 4 is considerably more pronounced than tha
Fig. 5. In disordered systems the existence of the maxim
is controlled by two competing effects. To some extent,
bounce backeffect will be suppressed by random fluctu
tions in the pore sizes; on the other hand, in disordered
tems diffusing particles may be effectively trapped in ve
small pores and thus make a very large contribution to
RTOP.

In Figs. 6 and 7 we show the smoothed simulation d
corresponding toDR54dR for the unconsolidated simple
cubic and dense random packings.@As in Figs. 4 and 5 the
curves have been adjusted to represent the limitDR→0.# In
Fig. 6 the simulations are compared to the eigenvalue exp
sion while in Fig. 7 the simulation data are compared to
measurements discussed in Sec. III C. In Fig. 6 the ma
mum in the normalized probability is again evident but
now much less pronounced. On physical grounds this is to
expected because at higher porosities, diffusing particles
move more easily into neighboring pores and thebounce
backeffect is diminished. Turning to Fig. 7, we see that t
overall comparison between theory and experiment is q
reasonable and that both the measurements and the sim
tions lie above the long time asymptote. Together with
data presented in Fig. 5, these results suggest that the
havoir of P(t) in disordered systems may be qualitative
similar to that found in periodic models. We intend to e
plore this issue further with additional experimental and n
merical work.

The calculations described above were all carried out w
r50. Intuitively, we expect that interfacial relaxation wi
strengthenthe maximum observed inPs(t). With nonzero

e
to
ri-
e

u-

FIG. 6. For the unconsolidated simple cubic packing, eigenva
expansion results for the normalized RTOP are compared
smoothed data based on SVD analysis of the corresponding num
cal simulations. The simulation data have been adjusted to
DR→0 limit using Eq.~3.4!. The two dot-dashed lines represe
the asymptotic limits of Eqs.~1.3! and ~2.19!.
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r, the particles most likely to survive are those that do
move very far from their point of origin and therefore do n
interact strongly with the pore-grain interface. Thus, in Fig
we see that, for the periodic sphere packs discussed ab
eigenvalue calculations indeed indicate that the maximum
Ps(t) is enhanced in thera/D051 case. We expect tha
random walk simulations would exhibit the same effec
they would, however, be considerably more involved th
the corresponding eigenvalue calculations@11,28#. Here too,
the values ofPs(`) are shown as horizontal straight lines—
they were calculated from the low lying diffusion eigensta
@see Eq.~2.19!#.

As we noted above, the calculations presented here
not intended to describe theshort timebehavior ofPs(t)
with great accuracy. Nevertheless, it is of interest to exam
the trends seen in Figs. 4–7. For the two low porosity s
tems~Figs. 4 and 5! the calculated results clearly curve u
ward from their short time asymptotes. Forf50.38 ~Fig. 7!
the calculations remain essentially in line with the short ti
asymptote up to surprisingly long times. Finally, at the hig
est porosity~Fig. 6!, the calculated curve has crossed ov
and now lies below the short time asymptote. This behav
is, of course, consistent with the appearance of a more
nounced maximum at intermediate times in the lower por
ity systems.

V. CONCLUSIONS

We have studied the intermediate and long time beha
of the normalized RTOP,Ps(t). Like the time dependen
diffusion coefficientD(t), this function is controlled by the
pore surface area at short times and by the effective elect
conductivity or formation factorF at long times. However

FIG. 7. For the unconsolidated dense random sphere pack, s
lation results for the normalized RTOP are compared with exp
mental data. The simulation data have been adjusted to
DR→0 limit using Eq.~3.4!. The two dot-dashed lines represe
the asymptotic limits of Eqs.~1.3! and~2.19!. The six experimental
points discussed in connection with Fig. 1 are also shown. N
that, for the large beads used in some of the measurements,r is not
entirely negligible. Nevertheless, its rather small value~i.e.,
rVp /SD050.21), plus the fact that those measurements corresp
only to the short time asymptotic regime, mean that the res
should not differ very much from the idealr50 case.
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this function exhibits considerably more varied and intere
ing behavior thanD(t). We believe thatPs(t), as well as
Ps(tur) for rÞ0, will be important indicators of the struc
ture of the underlying porous media. Our principal findin
are as follows:

~a! In ordered~periodic! porous mediaPs(t) can be cal-
culated by either eigenvalue expansions or numerical si
lations. The two methods are in excellent agreement.~b! In
ordered~periodic! porous mediaPs(t) crosses above its long
time asymptote and exhibits a well defined maximum at
termediate times. This behavior is predicted by a theor
that constrains the behavior of the lowest band of eigen
ues. Physically, this maximum is associated with t
reflectionof diffusing particles from the pore grain interfac
~c! In the random systems studied here, numerical simu
tions again suggest thatPs(t) will exhibit a maximum at
intermediate times. In unconsolidated dense random sp
packs, the simulation data and PGSE measurements are
erally in good agreement.~d! Systematic trends are eviden
in the manner at whichPs(t) moves away from its
asymptotic limit at short times. This behavior is again rela
to the degree of hindrance to diffusion caused by the s
matrix.
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FIG. 8. The effects of surface relaxation on the RTOP are ill
trated for the touching sphere~upper panel! and overlapping sphere
~lower panel! simple cubic packings. Note that, to leading order, t
short time behavior ofPs(t) is not affected byr @9#.
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